SIERPINSKI TETRAHEDRON

El tetraedro de Sierpinski es uno de los fractales tridimensionales más famosos y se ha reproducido decenas de veces con distintos materiales, pero siempre haciendo los tetraedros pequeños y pegándolos unos con otros. Con Polifieltros 3D hemos sido capaces de crear un modelo construible a partir de una sola pieza triangular. De esta manera se observa que la superficie de este fractal no cambia, iteración tras iteración tiene la misma superficie.


The Sierpinski tetrahedron is one of the most famous three-dimensional fractals and has been replicated dozens of times with different materials, but always with small tetrahedra and pasting each other. With 3D Polyfelt we were able to create a model constructible from a triangular piece. In this way it is observed that the area of this fractal does not change, iteration after iteration.

Fue presentado en la semana de la ciencia 2011 de la Universidad de Almería, y, sin lugar a dudas, uno de los juegos que más gustaron a los estudiantes de bachillerato que nos visitaron. Podéis verlo en el video presentación "Polifieltros 3D" junto a Icosín y la esponjita de Menger.


It was presented at the 2011 Science Week at the University of Almería, and, undoubtedly, one of the most liked games that high school students who visited us. You can see in the video presentation "Polifieltros 3D" with Icosín and Menger sponge.









Triángulo de Sierpinski / Sierpinski triangle

En la siguiente secuencia mostramos una forma sencilla para que niños y niñas formen fácilmente la 4ª iteración del triángulo de Sierpinski, simplemente doblando la tela.


The next sequence shows how children can easily form the 4th iteration of the Sierpinski triangle, by simply folding the felt.







4ª iteración del tetraedro de Sierpinski  / 4th iteration of the Sierpinski tetraedron

Si dispones de 4 tetraedros de Sierpinski pequeños, podrás formar la 4ª iteración de dos maneras distintas. La primera simplemente montando los tetraedros como os mostramos a continuación:

If you have 4 copies of the 3rd iteration of the Sierpinski tetrahedron, you can form the 4th iteration in two ways. The first one is shown below:








La segunda forma es más espectacular. Cada cara del tetraedro es de un color diferente.


The second form is really espectaular, since each face of the tetrahedron is of a different colour.